back to front page

floating-point encodings of some irrational numbers

Little-endian (LE) and big-endian (BE) floating-point encodings of some irrational numbers:

formulaapprox. valuefloating-point encoding
32-bit LE32-bit BE64-bit LE64-bit BE
0.5/π0.159150x83f9223e0x3e22f9830x83c8c96d305fc43f0x3fc45f306dc9c883
1/π0.318310x83f9a23e0x3ea2f9830x83c8c96d305fd43f0x3fd45f306dc9c883
1/e0.367880xb25abc3e0x3ebc5ab20x38ef2c36568bd73f0x3fd78b56362cef38
πe0.423310x32bcd83e0x3ed8bc320x78ad7e498617db3f0x3fdb1786497ead78
1/√50.447210x2ef9e43e0x3ee4f92e0xd9edbfc5259fdc3f0x3fdc9f25c5bfedd9
(e−1)/π0.546950xa9040c3f0x3f0c04a90x54abe5179580e13f0x3fe1809517e5ab54
1/√30.577350x3acd133f0x3f13cd3a0x1d339045a779e23f0x3fe279a74590331d
e/(π+1)0.656340xb905283f0x3f2805b90x87954d20b700e53f0x3fe500b7204d9587
e/40.679570x54f82d3f0x3f2df8540x6957148b0abfe53f0x3fe5bf0a8b145769
ln 20.693150x1872313f0x3f3172180xef39fafe422ee63f0x3fe62e42fefa39ef
1/√20.707110xf304353f0x3f3504f30xcc3b7f669ea0e63f0x3fe6a09e667f3bcc
e−20.718280x51e1373f0x3f37e1510xa45d512c2afce63f0x3fe6fc2a2c515da4
π/40.785400xdb0f493f0x3f490fdb0x182d4454fb21e93f0x3fe921fb54442d18
(π−1)/e0.787850x67b0493f0x3f49b0670xe0c337d10c36e93f0x3fe9360cd137c3e0
π/(e+1)0.844900xa84b583f0x3f584ba80x7f4c5bf07409eb3f0x3feb0974f05b4c7f
e/π0.865260x6a815d3f0x3f5d816a0x958fca4e2db0eb3f0x3febb02d4eca8f95
e/30.906090xc6f5673f0x3f67f5c60x8c7470b9b8feec3f0x3fecfeb8b970748c
π/31.047200x920a863f0x3f860a920x65732d3852c1f03f0x3ff0c152382d7365
π−21.141590xb51f923f0x3f921fb50x305a88a8f643f23f0x3ff243f6a8885a30
ln π1.144730x8286923f0x3f9286820xbda1e748d050f23f0x3ff250d048e7a1bd
π/e1.155730xe0ee933f0x3f93eee00xbe1d27f6db7df23f0x3ff27ddbf6271dbe
(e+1)/π1.183570x167f973f0x3f977f160xebb9d7c2e2eff23f0x3ff2efe2c2d7b9eb
e/(π−1)1.269280xc977a23f0x3fa277c90x12491c16f94ef43f0x3ff44ef9161c4912
e/21.359140x54f8ad3f0x3fadf8540x6957148b0abff53f0x3ff5bf0a8b145769
√21.414210xf304b53f0x3fb504f30xcd3b7f669ea0f63f0x3ff6a09e667f3bcd
log₂ e1.442700x3baab83f0x3fb8aa3b0xfe822b654715f73f0x3ff71547652b82fe
(π+1)/e1.523610x8c05c33f0x3fc3058c0x8c59b283b160f83f0x3ff860b183b2598c
π/21.570800xdb0fc93f0x3fc90fdb0x182d4454fb21f93f0x3ff921fb54442d18
(1+√5)/21.618030xbd1bcf3f0x3fcf1bbd0xa8f4979b77e3f93f0x3ff9e3779b97f4a8
e1.648720x4c09d33f0x3fd3094c0x9c061e8e2961fa3f0x3ffa61298e1e069c
log₂ π1.651500x3a64d33f0x3fd3643a0xf7dd9834876cfa3f0x3ffa6c873498ddf7
e−11.718280xa9f0db3f0x3fdbf0a90xd2ae2816157efb3f0x3ffb7e151628aed2
√31.732050xd7b3dd3f0x3fddb3d70xaa4c58e87ab6fb3f0x3ffbb67ae8584caa
π1.772450xc5dfe23f0x3fe2dfc50x6aefb491f85bfc3f0x3ffc5bf891b4ef6a
π/(e−1)1.828330xd706ea3f0x3fea06d70xe50f0fe3da40fd3f0x3ffd40dae30f0fe5
π−12.141590xdb0f09400x40090fdb0x182d4454fb2101400x400121fb54442d18
√52.236070xbd1b0f400x400f1bbd0xa8f4979b77e301400x4001e3779b97f4a8
e−1/π2.399970x249919400x401999240x591e5b7d243303400x400333247d5b1e59
√62.449490x71c41c400x401cc4710x2e2109148e9803400x4003988e1409212e
√72.645750xfd5329400x402953fd0xeaf8d2a97f2a05400x40052a7fa9d2f8ea
e2.718280x54f82d400x402df8540x6957148b0abf05400x4005bf0a8b145769
π−1/e2.773710x848431400x403184840x318f7e8d903006400x400630908d7e8f31
√82.828430xf30435400x403504f30xcd3b7f669ea006400x4006a09e667f3bcd
e+1/π3.036590x855742400x404257850x7990cd98f04a08400x40084af098cd9079
π3.141590xdb0f49400x40490fdb0x182d4454fb2109400x400921fb54442d18
√103.162280xc2624a400x404a62c20x535bda3a584c09400x40094c583ada5b53
π+1/e3.509470x319b60400x40609b310xffca091b66130c400x400c13661b09caff
e+13.718280x54f86d400x406df8540x6957148b0abf0d400x400dbf0a8b145769
π+14.141590xed8784400x408487ed0x8c1622aafd9010400x401090fdaa22168c
e+24.718280x2afc96400x4096fc2a0xb42b8a4585df12400x4012df85458a2bb4
π+25.141590xed87a4400x40a487ed0x8c1622aafd9014400x401490fdaa22168c
π(e−1)5.398140x93bdac400x40acbd930x5c92696cb29715400x401597b26c69925c
2e5.436560x54f8ad400x40adf8540x6957148b0abf15400x4015bf0a8b145769
(e−1)^π5.477350x7c46af400x40af467c0xe4849c8ecfe815400x4015e8cf8e9c84e4
e(π−1)5.821450x5749ba400x40ba49570x347d01d12a4917400x4017492ad1017d34
π+e5.859870x1784bb400x40bb84170x4042acef827017400x40177082efac4240
2π6.283190xdb0fc9400x40c90fdb0x182d4454fb2119400x401921fb54442d18
π^(e−1)7.148970x61c4e4400x40e4c4610x61ba77198c981c400x401c988c1977ba61
e^27.389060x2673ec400x40ec73260xadddd4b8648e1d400x401d8e64b8d4ddad
(π−1)^e7.925670x189ffd400x40fd9f180x3f7e5bffe2b31f400x401fb3e2ff5b7e3f
3e8.154850x3f7a02410x41027a3f0x8f414fe8474f20400x40204f47e84f418f
e^(π−1)8.512990x303508410x410835300x49e8c8faa50621400x402106a5fac8e849
πe8.539730xc0a208410x4108a2c00x74d4450b581421400x402114580b45d474
3π9.424780xe4cb16410x4116cbe40xd221337f7cd922400x4022d97c7f3321d2
π^29.869600xe6e91d410x411de9e60xde45bec93cbd23400x4023bd3cc9be45de
4e10.873130x54f82d410x412df8540x6957148b0abf25400x4025bf0a8b145769
e(π+1)11.258020xd52034410x413420d50x4eea0aae1a8426400x4026841aae0aea4e
π(e+1)11.681330xb7e63a410x413ae6b70xbadf56e0d65c27400x40275cd6e056dfba
4π12.566370xdb0f49410x41490fdb0x182d4454fb2129400x402921fb54442d18
e^e15.154260xdc7772410x417277dc0x7852e475fb4e2e400x402e4efb75e45278
e^320.085540x2eafa0410x41a0af2e0x05b16fbfe51534400x403415e5bf6fb105
π^e22.459160x5bacb3410x41b3ac5b0x1011385c8b7536400x4036758b5c381110
e^π23.140690x2320b9410x41b920230x3893b06e042437400x403724046eb09338
π^331.006280xdb0cf8410x41f80cdb0x7b9d38599b013f400x403f019b59389d7b
(π+1)^e47.603060x89693e420x423e69890x0111201931cd47400x4047cd3119201101
e^454.598150x81645a420x425a64810x573a272e904c4b400x404b4c902e273a57
(e+1)^π61.913190x1ca777420x4277a71c0x29580877e3f44e400x404ef4e377085829
e^(π+1)62.902920x989c7b420x427b9c980x3834da0593734f400x404f739305da3438
π^(e+1)70.557520x741d8d420x428d1d740xbe69e47caea351400x4051a3ae7ce469be
π^497.409090x74d1c2420x42c2d1740x2408298c2e5a58400x40585a2e8c290824

Python script used